Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 541
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1322113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585654

RESUMO

Background: Dopamine, a frequently used therapeutic agent for critically ill patients, has been shown to be implicated in clinical infections recently, however, the precise mechanisms underlying this association remain elusive. Klebsiella quasivariicola, a novel strain belonging to the Klebsiella species, exhibits potential pathogenic attributes. The impact of dopamine on K. quasivariicola infection has aroused our interest. Objective: Considering the contribution of host immune factors during infection, this study aimed to investigate the intricate interactions between K. quasivariicola, dopamine, and macrophages were explored. Methods: RAW264.7 cells and C57/BL6 mice were infected with K. quasivariicola, and the bacterial growth within macrophage, the production of inflammatory cytokines and the pathological changes in mice lungs were detected, in the absence or presence of dopamine. Results: Dopamine inhibited the growth of K. quasivariicola in the medium, but promoted bacterial growth when co-cultured with macrophages. The expression of proinflammatory cytokines increased in RAW 264.7 cells infected with K. quasivariicola, and a significant rise was observed upon the addition of dopamine. The infection of K. quasivariicola in mice induced an inflammatory response and lung injury, which were exacerbated by the administration of dopamine. Conclusions: Our findings suggest that dopamine may be one of the potential risk factors associated with K. quasivariicola infection. This empirical insight provides solid references for clinical precision medicine. Furthermore, an in vitro model of microbes-drugs-host immune cells for inhibitor screening was proposed to more accurately replicate the complex in vivo environment. This fundamental work had contributed to the present understanding of the crosstalk between pathogen, dopamine and host immune cells.


Assuntos
Infecções por Klebsiella , Pulmão , Humanos , Camundongos , Animais , Pulmão/patologia , Dopamina , Klebsiella pneumoniae/metabolismo , Macrófagos/microbiologia , Citocinas/metabolismo , Klebsiella/metabolismo , Proliferação de Células , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL
2.
J Agric Food Chem ; 72(10): 5176-5184, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38417018

RESUMO

Microbial degradation is a highly efficient and reliable approach for mitigating the contamination of sulfonylurea herbicides, such as chlorimuron-ethyl, in soil and water. In this study, we aimed to assess whether Kj-mhpC plays a pivotal role in the degradation of chlorimuron-ethyl. Kj-mhpC enzyme purified via prokaryotic expression exhibited the highest catalytic activity for chlorimuron-ethyl at 35 °C and pH 7. Bioinformatic analysis and three-dimensional homologous modeling of Kj-mhpC were conducted. Additionally, the presence of Mg+ and Cu2+ ions partially inhibited but Pb2+ ions completely inhibited the enzymatic activity of Kj-mhpC. LC/MS revealed that Kj-mhpC hydrolyzes the ester bond of chlorimuron-ethyl, resulting in the formation of 2-(4-chloro-6-methoxypyrimidine-2-amidoformamidesulfonyl) benzoic acid. Furthermore, the point mutation of serine at position 67 (Ser67) confirmed that it is the key amino acid at the active site for degrading chlorimuron-ethyl. This study enhanced the understanding of how chlorimuron-ethyl is degraded by microorganisms and provided a reference for bioremediation of the environment polluted with chlorimuron-ethyl.


Assuntos
Herbicidas , Pirimidinas , Poluentes do Solo , Klebsiella/genética , Klebsiella/metabolismo , Esterificação , Poluentes do Solo/metabolismo , Herbicidas/metabolismo , Compostos de Sulfonilureia/metabolismo , Íons
3.
Bioresour Technol ; 394: 130184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086459

RESUMO

A novel strain with heterotrophic nitrification and aerobic denitrification was screened and identified as Klebsiella sp. TSH15 by 16S rRNA. The results demonstrated that the ammonia-N and nitrate-N removal rates were 2.99 mg/L/h and 2.53 mg/L/h under optimal conditions, respectively. The analysis of the whole genome indicated that strain TSH15 contained the key genes involved in assimilatory/dissimilatory nitrate reduction and ammonia assimilation, including nas, nar, nir, nor, glnA, gltB, gdhA, and amt. The relative expression levels of key nitrogen removal genes were further detected by RT-qPCR. The results indicated that the N metabolic pathways of strain TSH15 were the conversion of nitrate or nitrite to ammonia by assimilatory/dissimilatory nitrate reduction (NO3-→NO2-→NH4+) and further conversion of ammonia to glutamate (NH4+-N â†’ Glutamate) by ammonia assimilation. These results indicated that the strain TSH15 had the potential to be applied to practical sewage treatment in the future.


Assuntos
Amônia , Desnitrificação , Amônia/metabolismo , Nitratos/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Nitrogênio/metabolismo , RNA Ribossômico 16S , Aerobiose , Nitrificação , Nitritos/metabolismo , Processos Heterotróficos , Glutamatos/metabolismo
4.
Environ Toxicol ; 39(4): 2254-2264, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148636

RESUMO

CA is a plant derivative with antibacterial and antiviral pharmacological effects, however, the therapeutic effect of CA on Klebsiella pneumonia and its mechanism study is still unclear. A rat KP model was established in vitro, a pneumonia cell model was established in vivo, the histopathological changes in the lungs were observed by HE staining after CA treatment, the expression of relevant inflammatory factors was detected by ELISA, the changes in the expression of proteins related to the AhR-Src-STAT3-IL-10 signaling pathway were detected by Western blot and immunofluorescence in the lungs, and the interactions between the proteins were verified by COIP relationship. The results showed that CA was able to attenuate the injury and inflammatory response of lung tissues, and molecular docking showed that there were binding sites between CA and AhR, and COIP demonstrated that AhR interacted with both STAT3 and Ser. In addition, CA was able to up-regulate the expression levels of pathway-related proteins of AhR, IL-10, p-Src, and p-STAT3, and AhR knockdown was able to reduce LPS-induced inflammatory responses and up-regulate pathway-related proteins, whereas CA treatment of AhR-knockdown-treated A549 cells did not show any statistically significant difference compared with the AhR knockdown group, demonstrating that CA exerts its pharmacological effects. These findings elucidated the mechanism of CA in the treatment of KP and demonstrated that CA is a potential therapeutic agent for KP.


Assuntos
Ácidos Cafeicos , Interleucina-10 , Pneumonia , Ratos , Animais , Simulação de Acoplamento Molecular , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Pneumonia/tratamento farmacológico , Klebsiella/metabolismo
5.
Bioresour Technol ; 387: 129604, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544543

RESUMO

Mixed pollutant wastewater has been a difficult problem due to the high toxicity of water bodies and the difficulty of treatment. Rice husk biochar modified with nano-iron tetroxide (RBC-nFe3O4) by polyvinyl alcohol cross-linking internal doping was used to introduce iron-reducing bacteria Klebsiella sp. FC61 to construct a bioreactor. The results of the long-term operation of the bioreactor showed that the removal efficiency of ammonia nitrogen (NH4+-N) and chemical oxygen demand best reached 90.18 and 98.49%, respectively. In addition, in the co-presence of Ni2+, Cd2+, and ciprofloxacin, the bioreactor was still able to remove pollutants efficiently by RBC-nFe3O4 and bio-iron precipitation inside the biocarrier. During the long-term operation, Klebsiella was always the dominant species in the bioreactor. And the sequencing data for functional prediction showed that the biocarrier contained a variety of enzymes and proteins involved in Feammox-related activities to ensure the stable and efficient operation of the bioreactor.


Assuntos
Hidrogéis , Microbiota , Hidrogéis/metabolismo , Águas Residuárias , Ferro/metabolismo , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Klebsiella/genética , Klebsiella/metabolismo
6.
Nat Metab ; 5(5): 896-909, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37157031

RESUMO

Drugs can be modified or degraded by the gut microbiota, which needs to be considered in personalized therapy. The clinical efficacy of the antidiabetic drug acarbose, an inhibitor of α-glucosidase, varies greatly among individuals for reasons that are largely unknown. Here we identify in the human gut acarbose-degrading bacteria, termed Klebsiella grimontii TD1, whose presence is associated with acarbose resistance in patients. Metagenomic analyses reveal that the abundance of K. grimontii TD1 is higher in patients with a weak response to acarbose and increases over time with acarbose treatment. In male diabetic mice, co-administration of K. grimontii TD1 reduces the hypoglycaemic effect of acarbose. Using induced transcriptome and protein profiling, we further identify an acarbose preferred glucosidase, Apg, in K. grimontii TD1, which can degrade acarbose into small molecules with loss of inhibitor function and is widely distributed in human intestinal microorganisms, especially in Klebsiella. Our results suggest that a comparatively large group of individuals could be at risk of acarbose resistance due to its degradation by intestinal bacteria, which may represent a clinically relevant example of non-antibiotic drug resistance.


Assuntos
Acarbose , Microbioma Gastrointestinal , Hipoglicemiantes , Hipoglicemiantes/metabolismo , Humanos , Acarbose/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Inibidores de Glicosídeo Hidrolases/metabolismo , Resistência a Medicamentos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Animais , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Adolescente , Adulto Jovem , Adulto , Idoso , Idoso de 80 Anos ou mais
7.
ACS Infect Dis ; 9(5): 1123-1136, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37130087

RESUMO

The wide spread of carbapenem-hydrolyzing ß-lactamases in Gram-negative bacteria has diminished the utility of the last-resort carbapenem antibiotics, significantly narrowing the available therapeutic options. In the Enterobacteriaceae family, which includes many important clinical pathogens such as Klebsiella pneumoniae and Escherichia coli, production of class D ß-lactamases from the OXA-48-type family constitutes the major mechanism of resistance to carbapenems. To address the public health threat posed by these enzymes, novel, effective therapeutics are urgently needed. Here, we report evaluation of a novel, C5α-methyl-substituted carbapenem, NA-1-157, and show that its MICs against bacteria producing OXA-48-type enzymes were reduced by 4- to 32-fold when compared to meropenem. When combined with commercial carbapenems, the potency of NA-1-157 was further enhanced, resulting in target potentiation concentrations ranging from 0.125 to 2 µg/mL. Kinetic studies demonstrated that the compound is poorly hydrolyzed by OXA-48, with a catalytic efficiency 30- to 50-fold lower than those of imipenem and meropenem. Acylation of OXA-48 by NA-1-157 was severely impaired, with a rate 10,000- to 36,000-fold slower when compared to the commercial carbapenems. Docking, molecular dynamics, and structural studies demonstrated that the presence of the C5α-methyl group in NA-1-157 creates steric clashes within the active site, leading to differences in the position and the hydrogen-bonding pattern of the compound, which are incompatible with efficient acylation. This study demonstrates that NA-1-157 is a promising novel carbapenem for treatment of infections caused by OXA-48-producing bacterial pathogens.


Assuntos
Antibacterianos , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Antibacterianos/farmacologia , Klebsiella/metabolismo , Cinética , beta-Lactamases/metabolismo , Escherichia coli/metabolismo
8.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985482

RESUMO

To prevent the rapidly increasing prevalence of bacterial resistance, it is crucial to discover new antibacterial agents. The emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae has been associated with a higher mortality rate in gulf union countries and worldwide. Compared to physical and chemical approaches, green zinc oxide nanoparticle (ZnO-NP) synthesis is thought to be significantly safer and more ecofriendly. The present study used molecular dynamics (MD) to examine how ZnO-NPs interact with porin protein (GLO21), a target of ß-lactam antibiotics, and then tested this interaction in vitro by determining the zone of inhibition (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), as well as the alteration of KPC's cell surface. The nanoparticles produced were characterized by UV-Vis spectroscopy, zetasizer, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). In silico investigation was conducted using a variety of computational techniques, including Autodock Vina for protein and ligand docking and Desmond for MD simulation. The candidate ligands that interact with the GLO21 protein were biosynthesized ZnO-NPs, meropenem, imipenem, and cefepime. Analysis of MD revealed that the ZnO-NPs had the highest log P value (-9.1 kcal/mol), which indicates higher permeability through the bacterial surface, followed by cefepime (-7.9 kcal/mol), meropenem (-7.5 kcal/mol), and imipenem (-6.4 kcal/mol). All tested compounds and ZnO-NPs possess similar binding sites of porin proteins. An MD simulation study showed a stable system for ZnO-NPs and cefepime, as confirmed by RMSD and RMSF values during 100 ns trajectories. The test compounds were further inspected for their intersection with porin in terms of hydrophobic, hydrogen, and ionic levels. In addition, the stability of these bonds were measured by observing the protein-ligand contact within 100 ns trajectories. ZnO-NPs showed promising results for fighting KPC, represented in MIC (0.2 mg/mL), MBC (0.5 mg/mL), and ZI (24 mm diameter). To draw the conclusion that ZnO-NP is a potent antibacterial agent and in order to identify potent antibacterial drugs that do not harm human cells, further in vivo studies are required.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Pneumonia , Óxido de Zinco , Humanos , Óxido de Zinco/química , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Klebsiella/metabolismo , Cefepima , Porinas/metabolismo , Simulação de Dinâmica Molecular , Ligantes , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Imipenem/farmacologia , Monobactamas , Testes de Sensibilidade Microbiana , Klebsiella pneumoniae/metabolismo , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724283

RESUMO

AIMS: The prevalent distribution of plasmid-mediated ß-lactam resistance is the most pressing global problem in enteric diseases. The current work aims to characterize plasmid-carrying ß-lactam resistant Enterobacteriaceae isolates from North East India for horizontal gene transfer (HGT) and plasmid adaptation study. METHODS AND RESULTS: In vitro transconjugation and transformation showed overall high conjugation frequency (4.11 × 10-1-9.2 × 10-1) and moderate transformation efficiency/µg DNA (1.02 × 102 -1 × 103), and the highest conjugation frequency (9.2 × 10-1) and transformation efficiency (1 × 103) for Escherichia species S-10. Intra/intergenus plasmid transformation efficiency was highest for the transformation of Klebsiella pneumoniae S-2 to Shigellaflexneri S-42 (1.3 × 103) and lowest for Escherichia species S-10 to Escherichia fergusonii S-30 (2 × 102). In the plasmid stability test, S-10 was detected with the highest plasmid carrying frequency (83.44%) and insignificant segregational loss rate (0.0004) until the 60th day with low plasmid cost on the host. The above findings were also validated by whole-plasmid sequencing of Escherichia species S-10. The genome was identified with two plasmids constituting multiple phage proteins, relaxosomal protein NikA, replication protein RepA, and the plasmid maintenance proteins (ParA, RelE/ParE), thus assisting stable plasmid maintenance. CONCLUSIONS: The results thus indicate that the high conjugation ability and low plasmid fitness cost might lead to horizontal gene transfer of the plasmid to the environment due to their prolonged adaptation in nonselective conditions, intensifying the infection's severity.


Assuntos
Toxinas Bacterianas , Proteínas de Escherichia coli , Humanos , Criança , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Plasmídeos/genética , Klebsiella/metabolismo , Índia , Transferência Genética Horizontal , Antibacterianos/farmacologia , Proteínas de Escherichia coli/genética
10.
Int J Med Microbiol ; 313(2): 151576, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36812841

RESUMO

INTRODUCTION: Pneumonia is an inflammation-related respiratory infection and chlorogenic acid (CGA) possesses a wide variety of bioactive properties, such as anti-inflammation and anti-bacteria. AIM: This study explored the anti-inflammatory mechanism of CGA in Klebsiella pneumoniae (Kp)-induced rats with severe pneumonia. METHODS: The pneumonia rat models were established by infection with Kp and treated with CGA. Survival rates, bacterial load, lung water content, and cell numbers in the bronchoalveolar lavage fluid were recorded, lung pathological changes were scored, and levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay. RLE6TN cells were infected with Kp and treated with CGA. The expression levels of microRNA (miR)-124-3p, p38, and mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2) in lung tissues and RLE6TN cells were quantified by real-time quantitative polymerase chain reaction or Western blotting. The binding of miR-124-3p to p38 was validated by the dual-luciferase and RNA pull-down assays. In vitro, the functional rescue experiments were performed using miR-124-3p inhibitor or p38 agonist. RESULTS: Kp-induced pneumonia rats presented high mortality, increased lung inflammatory infiltration and the release of inflammatory cytokines, and enhanced bacterial load, while CGA treatment improved rat survival rates and the above situations. CGA increased miR-124-3p expression, and miR-124-3p inhibited p38 expression and inactivated the p38MAPK pathway. Inhibition of miR-124-3p or activation of the p38MAPK pathway reversed the alleviative effect of CGA on pneumonia in vitro. CONCLUSION: CGA upregulated miR-124-3p expression and inactivated the p38MAPK pathway to downregulate inflammatory levels, facilitating the recovery of Kp-induced pneumonia rats.


Assuntos
MicroRNAs , Pneumonia , Ratos , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/uso terapêutico , Klebsiella pneumoniae/genética , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Klebsiella/genética , Klebsiella/metabolismo , MicroRNAs/genética , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
11.
PLoS One ; 18(1): e0280150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630464

RESUMO

BACKGROUND: Antibiotic resistance has become an enduring threat to human health. This has prompted extensive research to identify the determinants responsible in a bid to fight the spread of resistance and also develop new antibiotics. However, routine procedures focus on identifying genetic determinants of resistance only on phenotypically resistant isolates. We aimed to characterise plasmid mediated resistance determinants in key Enterobacteriaceae isolates with differential phenotypic susceptibility profiles and evaluated the contribution of resistance genes on phenotypic expression of susceptibility. METHODS: The study was carried out on 200 Enterobacteriaceae isolates belonging to the genera E. coli, Salmonella, and Klebsiella; 100 resistant and 100 susceptible to quinolones, aminoglycosides, and ESBL-producing as determined by disk diffusion. Reduced susceptibility in susceptible isolates was determined as an increased MIC by broth microdilution. Plasmid-borne resistance genes were sought in all isolates by endpoint PCR. We performed correlations tests to determine the relationship between the occurrence of resistance genes and increased MIC in susceptible isolates. We then used the notion of penetrance to show adequacy between resistance gene carriage and phenotypic resistance as well as diagnostic odds ratio to evaluate how predictable phenotypic susceptibility profile could determine the presence of resistant genes in the isolates. RESULTS: Reduced susceptibility was detected in 30% (9/30) ESBL negative, 50% (20/40) quinolone-susceptible and 53.33% (16/30) aminoglycoside-susceptible isolates. Plasmid-borne resistance genes were detected in 50% (15/30) of ESBL negative, 65% (26/40) quinolone susceptible and 66.67% (20/30) aminoglycoside susceptible isolates. Reduced susceptibility increased the risk of susceptible isolates carrying resistance genes (ORs 4.125, 8.36, and 8.89 respectively for ESBL, quinolone, and aminoglycoside resistance genes). Resistance gene carriage correlated significantly to reduced susceptibility for quinolone and aminoglycoside resistance genes (0.002 and 0.015 at CI95). Gene carriage correlated with phenotypic resistance at an estimated 64.28% for ESBL, 56.90% for quinolone, and 58.33% for aminoglycoside resistance genes. CONCLUSIONS: A high carriage of plasmid-mediated genes for ESBL, quinolone, and aminoglycoside resistance was found among the Enterobacteriaceae tested. However, gene carriage was not always correlated with phenotypic expression. This allows us to suggest that assessing genetic determinants of resistance should not be based on AST profile only. Further studies, including assessing the role of chromosomal determinants will shed light on other factors that undermine antimicrobial susceptibility locally.


Assuntos
Escherichia coli , Quinolonas , Animais , Humanos , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Klebsiella/genética , Klebsiella/metabolismo , Galinhas/genética , Camarões , beta-Lactamases/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Aminoglicosídeos/farmacologia , Quinolonas/farmacologia , Salmonella/genética , Salmonella/metabolismo , Testes de Sensibilidade Microbiana
12.
Sci Total Environ ; 870: 161805, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36708818

RESUMO

The emergence of extended-spectrum ß-lactamase (ESBL)- and especially carbapenemases in Enterobacterales has led to limited therapeutic options. Therefore, it is critical to fully understand all potential routes of transmission, especially in high-risk sources such as hospital wastewater. This study aimed to quantify four enteric opportunistic pathogens (EOPs), total, ESBL- and carbapenem-resistant coliforms and their corresponding resistance genes (two ESBL and five carbapenemase genes) and to characterize enterobacterial isolates from hospital wastewater from two large hospitals in Zagreb over two seasons. Culturing revealed similar average levels of total and carbapenem-resistant coliforms (3.4 × 104 CFU/mL), and 10-fold lower levels of presumptive ESBL coliforms (3 × 103 CFU/mL). Real-time PCR revealed the highest E. coli levels among EOPs (105 cell equivalents/mL) and the highest levels of the blaKPC gene (up to 10-1 gene copies/16S copies) among all resistance genes examined. Of the 69 ESBL- and 90 carbapenemase-producing Enterobacterales (CPE) isolates from hospital wastewater, all were multidrug-resistant and most were identified as Escherichia coli, Citrobacter, Enterobacter, and Klebsiella. Among ESBL isolates, blaCTX-M-15 was the most prevalent ESBL gene, whereas in CPE isolates, blaKPC-2 and blaNDM-1 were the most frequently detected CP genes, followed by blaOXA-48. Molecular epidemiology using PFGE, MLST and whole-genome sequencing (WGS) revealed that clinically relevant variants such as E. coli ST131 (blaCTX-M-15/blaTEM-116) and ST541 (blaKPC-2), K. pneumoniae ST101 (blaOXA-48/blaNDM-1), and Enterobacter cloacae complex ST277 (blaKPC-2/blaNDM-1) were among the most frequently detected clone types. WGS also revealed a diverse range of resistance genes and plasmids in these and other isolates, as well as transposons and insertion sequences in the flanking regions of the blaCTX-M, blaOXA-48, and blaKPC-2 genes, suggesting the potential for mobilization. We conclude that hospital wastewater is a potential secondary reservoir of clinically important pathogens and resistance genes and therefore requires effective pretreatment before discharge to the municipal sewer system.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Águas Residuárias , Tipagem de Sequências Multilocus , Croácia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Klebsiella pneumoniae , Hospitais , Klebsiella/genética , Klebsiella/metabolismo , Enterobacter/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
13.
Methods Mol Biol ; 2594: 13-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264485

RESUMO

This protocol describes a method for verifying the specific transcription factor regulating glycerol dehydratase (GDH) expression in Klebsiella. DNA pull-down accompanied with mass spectrometry is used to screen and identify the transcription factor interacting with the promoter region of the key gene in Klebsiella. EMSA method is used to validate the specific binding of the transcription factor to the promoter region in vitro. In addition, the target DNA fragments are constructed by fusion PCR to prepare competent cells from Klebsiella for electrical transformation and further transformed to obtain key gene deletion strains to verify the transcription factor responsible for the target gene expression in Klebsiella.


Assuntos
Klebsiella , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Regiões Promotoras Genéticas , Regulação da Expressão Gênica , DNA , Transcrição Gênica
14.
Chemosphere ; 313: 137375, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435315

RESUMO

Co-contamination by antibiotics and heavy metal is common in the environment, however, there is scarce information about antibiotics biodegradation under heavy metals stress. In this study, Klebsiella sp. Strain YB1 was isolated which is capable of biodegrading chloramphenicol (CAP) with a biodegradation efficiency of 22.41% at an initial CAP of 10 mg L-1 within 2 days. CAP biodegradation which fitted well with the first-order kinetics. YB1 still degrades CAP under Cd stress, however 10 mg L-1 Cd inhibited CAP biodegradation by 15.1%. Biotransformation pathways remained the same under Cd stress, but two new products (Cmpd 19 and Cmpd 20) were identified. Five parallel metabolism pathways of CAP were proposed with/without Cd stress, including one novel pathway (pathway 5) that has not been reported before. In pathway 5, the initial reaction was oxidation of CAP by disruption of C-C bond at the side chain of C1 and C2 with the formation of 4-nitrobenzyl alcohol and CY7, then these intermediates were oxidized into p-nitrobenzoic acid and CY1, respectively. CAP acetyltransferase and nitroreductase and 2,3/4,5-dioxygenase may play an important role in CAP biodegradation through genome analysis and prediction. This study deepens our understanding of mechanism of antibiotic degradation under heavy metal stress in the environment.


Assuntos
Cádmio , Metais Pesados , Antibacterianos/farmacologia , Biodegradação Ambiental , Biotransformação , Cádmio/metabolismo , Cloranfenicol/farmacologia , Klebsiella/genética , Klebsiella/metabolismo , Genoma Bacteriano
15.
Environ Pollut ; 316(Pt 2): 120645, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375580

RESUMO

Klebsiella quasipneumoniae subsp. similipneumoniae has emerged as a human pathogen and sporadic isolates from non-clinical sources were reported. Here, we described the phenotypic- and genomic-characteristics of a multidrug-resistant (MDR) and potentially hypervirulent (MDR-hv) Klebsiella quasipneumoniae subsp. similipneumoniae (KqA1) isolated from hospital wastewater. The antibiotic susceptibility profile of KqA1 was investigated using disk-diffusion method, broth microdilution method, and agar dilution method, and the genetic characteristics of antimicrobial resistance, mobile genetics elements, and virulence were evaluated by genomic DNA sequencing on the Illumina® NovaSeq6000 platform as well as by bioinformatic analysis. Resistome analyses revealed the presence of genes related to resistance to ß-lactams, aminoglycosides, quinolones, tetracyclines, sulfonamides, trimethoprim, chloramphenicol, macrolides, and fosfomycin. New genetic contexts to blaGES-16 (carbapenemase gene) and to fosA (fosfomycin resistance gene) were described. A set of mechanisms that can contribute to antibiotic resistance, commonly detected in Klebsiella spp., was also found including chromosomal mutations, efflux systems, proteins, and regulators. Moreover, KqA1 presented genes related to tolerance to metals (arsenic, copper, nickel, cobalt, magnesium, cadmium, zinc, tellurium, selenium) and to biocides (quaternary-ammonium compounds). The isolate was classified as potentially hypervirulent due to a wide range of virulence factors found associated to regulation, motility, biofilm, effector delivery systems, immune modulation, nutritional/metabolic factors, adherence, invasion, and competitive advantage. The occurrence of MDR-hv KqA1 in hospital wastewater points out how this environment matrix plays a crucial role in the maintenance and selection of critical bacterial pathogens. Regarding One Health perspective, it is evident the need for multidisciplinary implementation of control measures for antibiotic-resistant bacteria, not only in hospital settings but also in a general environmental context to mitigate the dissemination of MDR and hv bacteria.


Assuntos
Fosfomicina , Águas Residuárias , Humanos , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana , Klebsiella/genética , Klebsiella/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Hospitais
16.
Antimicrob Agents Chemother ; 66(9): e0052722, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35924913

RESUMO

Metallo-ß-lactamase (MBL)-producing Gram-negative bacteria cause infections associated with high rates of morbidity and mortality. Currently, a leading regimen to treat infections caused by MBL-producing bacteria is aztreonam combined with ceftazidime-avibactam. The purpose of the present study was to evaluate and rationally optimize the combination of aztreonam and ceftazidime-avibactam with and without polymyxin B against a clinical Klebsiella pneumoniae isolate producing NDM-1 and CTX-M by use of the hollow fiber infection model (HFIM). A novel de-escalation approach to polymyxin B dosing was also explored, whereby a standard 0-h loading dose was followed by maintenance doses that were 50% of the typical clinical regimen. In the HFIM, the addition of polymyxin B to aztreonam plus ceftazidime-avibactam significantly improved bacterial killing, leading to eradication, including for the novel de-escalation dosing strategy. Serial samples from the growth control and monotherapies were explored in a Galleria mellonella virulence model to assess virulence changes. Weibull regression showed that low-level ceftazidime resistance and treatment with monotherapy resulted in increased G. mellonella mortality (P < 0.05). A neutropenic rabbit pneumonia model demonstrated that aztreonam plus ceftazidime-avibactam with or without polymyxin B resulted in similar bacterial killing, and these combination therapies were statistically significantly better than monotherapies (P < 0.05). However, only the polymyxin B-containing combination therapy produced a statistically significant decrease in lung weights (P < 0.05), indicating a decreased inflammatory process. Altogether, adding polymyxin B to the combination of aztreonam plus ceftazidime-avibactam for NDM- and CTX-M-producing K. pneumoniae improved bacterial killing effects, reduced lung inflammation, suppressed resistance amplification, and limited virulence changes.


Assuntos
Ceftazidima , Klebsiella pneumoniae , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Aztreonam/farmacologia , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Parede Celular/metabolismo , Combinação de Medicamentos , Klebsiella/metabolismo , Testes de Sensibilidade Microbiana , Polimixina B/farmacologia , Coelhos , beta-Lactamases/metabolismo
17.
Curr Microbiol ; 79(9): 252, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834125

RESUMO

An active microbial community of nitrifying and denitrifying bacteria is needed for efficient utilization of nitrogenous compounds from wastewater. In this study, we explored the bacterial community diversity and structure within rivers, treated and untreated wastewater treatment plants (WWTPs) discharging into Lake Victoria. Water samples were collected from rivers and WWTPs that drain into Lake Victoria. Physicochemical analysis was done to determine the level of nutrients or pollutant loading in the samples. Total community DNA was extracted, followed by Illumina high throughput sequencing to determine the total microbial community and abundance. Enrichment and isolation were then done to recover potential nitrifiers and denitrifiers. Physicochemical analysis pointed to high levels total nitrogen and ammonia in both treated and untreated WWTPs as compared to the samples from the lake and rivers. A total of 1,763 operational taxonomic units (OTUs) spread across 26 bacterial phyla were observed with the most dominant phylum being Proteobacteria. We observed a decreasing trend in diversity from the lake, rivers to WWTPs. The genus Planktothrix constituted 19% of the sequence reads in sample J2 collected from the lagoon. All the isolates recovered in this study were affiliated to three genera: Pseudomonas, Klebsiella and Enterobacter in the phylum Proteobacteria. A combination of metagenomic analysis and a culture-dependent approach helped us understand the relative abundance as well as potential nitrifiers and denitrifiers present in different samples. The recovered isolates could be used for in situ removal of nitrogenous compounds from contaminated wastewater.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Lagos , Águas Residuárias/microbiologia , Purificação da Água , Bactérias/classificação , Bactérias/isolamento & purificação , Desnitrificação , Enterobacter/classificação , Enterobacter/crescimento & desenvolvimento , Enterobacter/metabolismo , Quênia , Klebsiella/classificação , Klebsiella/crescimento & desenvolvimento , Klebsiella/isolamento & purificação , Klebsiella/metabolismo , Lagos/química , Lagos/microbiologia , Nitrificação , Proteobactérias/classificação , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Pseudomonas/classificação , Pseudomonas/crescimento & desenvolvimento , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Rios/microbiologia , Águas Residuárias/química
18.
Chemosphere ; 303(Pt 1): 135028, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35605735

RESUMO

In this study, an attempt was made to decipher the underlying differential response mechanism of Klebsiella sp. KL-1 induced by exposure to disparate categories of dyestuffs in xylose (Xyl) co-metabolic system. Here, representative reactive black 5 (RB5), remazol brilliant blue R (RBBR) and malachite green (MG) belonging to the azo, anthraquinone and triphenylmethane categories were employed as three model dyestuffs. Klebsiella sp. KL-1 enabled nearly 98%, 80% or 97% removal of contaminants in assays Xyl + RB5, Xyl + RBBR or Xyl + MG after 48 h, which was respectively 16%, 11% or 22% higher than those in the assays devoid of xylose. LC-QTOF-MS revealed an increased formation of smaller molecular weight intermediates in assay Xyl + RB5, whereas more metabolic pathways were deduced in assay Xyl + RBBR. Metaproteomics analysis displayed remarkable proteome alteration with regards to the structural difference effect of dyestuffs by Klebsiella sp. KL-1. Significant (p-value<0.05) activation of pivotal candidate NADH-quinone oxidoreductase occurred after 48 h of disparate dyestuff exposure but with varying abundance. Dominant FMN-dependent NADH-azoreductase, Cytochrome d terminal oxidase or Thiol peroxidase were likewise deemed to be responsible for the catalytic cleavage of RB5, RBBR or MG, respectively. Further, the differential response mechanism towards the structurally discrepant dyestuffs was put forward. Elevated reducing force associated with the corresponding functional proteins/enzymes was transferred to the exterior of the cell to differentially decompose the target contaminants. Overall, this study was dedicated to provide in-depth insights into the molecular response mechanism of co-metabolic degradation of refractory and structurally discrepant dyestuffs by an indigenous isolated Klebsiella strain.


Assuntos
Klebsiella , Xilose , Biodegradação Ambiental , Corantes/química , Klebsiella/metabolismo , NAD
19.
Int Microbiol ; 25(3): 503-513, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35147786

RESUMO

Genome sequencing was used to identify key genes for the generation of hydrogen gas through cotton stalk hydrolysate fermentation by Klebsiella sp. WL1316. Genome annotation indicated that the genome size was 5.2 Mb with GC content 57.6%. Xylose was metabolized in the pentose phosphate pathway via the conversion of xylose to xylulose in Klebsiella sp. WL1316. This strain contained diverse formate-hydrogen lyases and hydrogenases with gene numbers higher than closely related species. A metabolic network involving glucose, xylose utilisation, and fermentative hydrogen production was reconstructed. Metabolic analysis of key node metabolites showed that glucose and xylose metabolism influenced biomass synthesis and biohydrogen production. Formic acid accumulated during fermentation at 24-48 h but decreased sharply after 48 h, illustrating the splitting of formic acid to hydrogen gas during early-to-mid fermentation. The Kreb's cycle was the main competitive metabolic branch of biohydrogen synthesis at 24 h of fermentation. Lactic and acetic acid fermentation and late ethanol accumulation competed the carbon skeleton of biohydrogen synthesis after 72 h of fermentation, indicating that these competitive pathways are regulated in middle-to-late fermentation (48-96 h). This study is the first to elucidate the metabolic mechanisms of mixed sugar utilisation and biohydrogen synthesis based on genomic information.


Assuntos
Klebsiella , Xilose , Fermentação , Glucose/metabolismo , Hidrogênio/metabolismo , Klebsiella/genética , Klebsiella/metabolismo , Xilose/metabolismo
20.
J Sci Food Agric ; 102(8): 3297-3307, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34800295

RESUMO

BACKGROUND: Natural dihydrocarvone has been widely used in the food, cosmetics, agrochemicals and pharmaceuticals industries because of its sensory properties and physiological effects. In our previous study, Klebsiella sp. O852 was shown to be capable of converting limonene to trans-dihydrocarvone with high catalytic efficiency. Thus, it was essential to identify and characterize the functional genes involved in limonene biotransformation using genome sequencing and heterologous expression. RESULTS: The 5.49-Mb draft genome sequence of Klebsiella sp. O852 contained 5218 protein-encoding genes. Seven candidate genes participating in the biotransformation of limonene to trans-dihydrocarvone were identified by genome analysis. Heterologous expression of these genes in Escherichia coli BL21(DE3) indicated that 0852_GM005124 and 0852_GM003417 could hydroxylate limonene in the six position to yield carveol, carvone and trans-dihydrocarvone. 0852_GM002332 and 0852_GM001602 could catalyze the oxidation of carveol to carvone and trans-dihydrocarvone. 0852_GM000709, 0852_GM001600 and 0852_GM000954 had high carvone reductase activity toward the hydrogenation of carvone to trans-dihydrocarvone. CONCLUSION: The results obtained in the present study suggest that the seven genes described above were responsible for converting limonene to trans-dihydrocarvone. The present study contributes to providing a foundation for the industrial production of trans-dihydrocarvone in microbial chassis cells using synthetic biology strategies. © 2021 Society of Chemical Industry.


Assuntos
Klebsiella , Terpenos , Biotransformação , Monoterpenos Cicloexânicos , Klebsiella/metabolismo , Limoneno/metabolismo , Monoterpenos/metabolismo , Oxirredução , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...